博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
PostgreSQL 百亿数据 秒级响应 正则及模糊查询
阅读量:6453 次
发布时间:2019-06-23

本文共 54014 字,大约阅读时间需要 180 分钟。

正则匹配和模糊匹配通常是搜索引擎的特长,但是如果你使用的是 PostgreSQL 数据库照样能实现,并且性能不赖,加上分布式方案 (譬如 plproxy, pg_shard, fdw shard, pg-xc, pg-xl, greenplum),处理百亿以上数据量的正则匹配和模糊匹配效果杠杠的,同时还不失数据库固有的功能,一举多得。

物联网中有大量的数据,除了数字数据,还有字符串类的数据,例如条形码,车牌,手机号,邮箱,姓名等等。

假设用户需要在大量的传感数据中进行模糊检索,甚至规则表达式匹配,有什么高效的方法呢?
这种场景还挺多,例如市面上发现了一批药品可能有问题,需要对药品条码进行规则表达式查找,找出复合条件的药品流向。
又比如在侦查行动时,线索的检索,如用户提供的残缺的电话号码,邮箱,车牌,IP地址,QQ号码,微信号码等等。
根据这些信息加上时间的叠加,模糊匹配和关联,最终找出罪犯。
可以看出,模糊匹配,正则表达式匹配,和人脸拼图有点类似,需求非常的迫切。

首先对应用场景进行一下分类,以及现有技术下能使用的优化手段。

.1. 带前缀的模糊查询,例如 like 'ABC%',在PG中也可以写成 ~ '^ABC'
可以使用btree索引优化,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

.2. 带后缀的模糊查询,例如 like '%ABC',在PG中也可以写成 ~ 'ABC$'

可以使用reverse函数btree索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

.3. 不带前缀和后缀的模糊查询,例如 like '%AB_C%',在PG中也可以写成 ~ 'AB.C'

可以使用pg_trgm的gin索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

.4. 正则表达式查询,例如 ~ '[\d]+def1.?[a|b|0|8]{1,3}'

可以使用pg_trgm的gin索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

PostgreSQL pg_trgm插件自从9.1开始支持模糊查询使用索引,从9.3开始支持规则表达式查询使用索引,大大提高了PostgreSQL在刑侦方面的能力。

代码见

pg_trgm插件的原理,将字符串前加2个空格,后加1个空格,组成一个新的字符串,并将这个新的字符串按照每3个相邻的字符拆分成多个token。

当使用规则表达式或者模糊查询进行匹配时,会检索出他们的近似度,再进行filter。
GIN索引的图例:
从btree检索到匹配的token时,指向对应的list, 从list中存储的ctid找到对应的记录。
因为一个字符串会拆成很多个token,所以没插入一条记录,会更新多条索引,这也是GIN索引需要fastupdate的原因。
正则匹配是怎么做到的呢?
详见 
实际上它是将正则表达式转换成了NFA格式,然后扫描多个TOKEN,进行bit and|or匹配。
正则组合如果转换出来的的bit and|or很多的话,就需要大量的recheck,性能也不能好到哪里去。

下面针对以上四种场景,实例讲解如何优化。

.1. 带前缀的模糊查询,例如 like 'ABC%',在PG中也可以写成 ~ '^ABC'

可以使用btree索引优化,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。
例子,1000万随机产生的MD5数据的前8个字符。

postgres=# create table tb(info text);  CREATE TABLE  postgres=# insert into tb select substring(md5(random()::text),1,8) from generate_series(1,10000000);  INSERT 0 10000000  postgres=# create index idx_tb on tb(info);  CREATE INDEX  postgres=# select * from tb limit 1;     info     ----------   376821ab  (1 row)  postgres=# explain select * from tb where info ~ '^376821' limit 10;                                    QUERY PLAN                                     -------------------------------------------------------------------------------   Limit  (cost=0.43..0.52 rows=10 width=9)     ->  Index Only Scan using idx_tb on tb  (cost=0.43..8.46 rows=1000 width=9)           Index Cond: ((info >= '376821'::text) AND (info < '376822'::text))           Filter: (info ~ '^376821'::text)  (4 rows)  postgres=# select * from tb where info ~ '^376821' limit 10;     info     ----------   376821ab  (1 row)  Time: 0.536 ms  postgres=# set enable_indexscan=off;  SET  Time: 1.344 ms  postgres=# set enable_bitmapscan=off;  SET  Time: 0.158 ms  postgres=# explain select * from tb where info ~ '^376821' limit 10;                             QUERY PLAN                             ----------------------------------------------------------------   Limit  (cost=0.00..1790.55 rows=10 width=9)     ->  Seq Scan on tb  (cost=0.00..179055.00 rows=1000 width=9)           Filter: (info ~ '^376821'::text)  (3 rows)  Time: 0.505 ms

带前缀的模糊查询,不使用索引需要5483毫秒。

带前缀的模糊查询,使用索引只需要0.5毫秒。

postgres=# select * from tb where info ~ '^376821' limit 10;     info     ----------   376821ab  (1 row)  Time: 5483.655 ms

.2. 带后缀的模糊查询,例如 like '%ABC',在PG中也可以写成 ~ 'ABC$'

可以使用reverse函数btree索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

postgres=# create index idx_tb1 on tb(reverse(info));  CREATE INDEX  postgres=# explain select * from tb where reverse(info) ~ '^ba128' limit 10;                                           QUERY PLAN                                           --------------------------------------------------------------------------------------------   Limit  (cost=0.43..28.19 rows=10 width=9)     ->  Index Scan using idx_tb1 on tb  (cost=0.43..138778.43 rows=50000 width=9)           Index Cond: ((reverse(info) >= 'ba128'::text) AND (reverse(info) < 'ba129'::text))           Filter: (reverse(info) ~ '^ba128'::text)  (4 rows)  postgres=# select * from tb where reverse(info) ~ '^ba128' limit 10;     info     ----------   220821ab   671821ab   305821ab   e65821ab   536821ab   376821ab   668821ab   4d8821ab   26c821ab  (9 rows)  Time: 0.506 ms

带后缀的模糊查询,使用索引只需要0.5毫秒。

.3. 不带前缀和后缀的模糊查询,例如 like '%AB_C%',在PG中也可以写成 ~ 'AB.C'

可以使用pg_trgm的gin索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

postgres=# create extension pg_trgm;  postgres=# explain select * from tb where info ~ '5821a';                                   QUERY PLAN                                   ----------------------------------------------------------------------------   Bitmap Heap Scan on tb  (cost=103.75..3677.71 rows=1000 width=9)     Recheck Cond: (info ~ '5821a'::text)     ->  Bitmap Index Scan on idx_tb_2  (cost=0.00..103.50 rows=1000 width=0)           Index Cond: (info ~ '5821a'::text)  (4 rows)  Time: 0.647 ms  postgres=# select * from tb where info ~ '5821a';     info     ----------   5821a8a3   945821af   45821a74   9fe5821a   5821a7e0   5821af2a   1075821a   e5821ac9   d265821a   45f5821a   df5821a4   de5821af   71c5821a   375821a3   fc5821af   5c5821ad   e65821ab   5821adde   c35821a6   5821a642   305821ab   5821a1c8   75821a5c   ce95821a   a65821ad  (25 rows)  Time: 3.808 ms

前后模糊查询,使用索引只需要3.8毫秒。

.4. 正则表达式查询,例如 ~ '[\d]+def1.?[a|b|0|8]{1,3}'

可以使用pg_trgm的gin索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

前后模糊查询,使用索引只需要108毫秒。

postgres=# select * from tb where info ~ 'e65[\d]{2}a[b]{1,2}8' limit 10;     info     ----------   4e6567ab   1e6530ab   e6500ab8   ae6583ab   e6564ab7   5e6532ab   e6526abf   e6560ab6  (8 rows)  Time: 108.577 ms

时间主要花费在排他上面。

检索了14794行,remove了14793行。大量的时间花费在无用功上,但是比全表扫还是好很多。

postgres=# explain (verbose,analyze,buffers,costs,timing) select * from tb where info ~ 'e65[\d]{
2}a[b]{
1,2}8' limit 10; QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------- Limit (cost=511.75..547.49 rows=10 width=9) (actual time=89.934..120.567 rows=1 loops=1) Output: info Buffers: shared hit=13054 -> Bitmap Heap Scan on public.tb (cost=511.75..4085.71 rows=1000 width=9) (actual time=89.930..120.562 rows=1 loops=1) Output: info Recheck Cond: (tb.info ~ 'e65[\d]{
2}a[b]{
1,2}8'::text) Rows Removed by Index Recheck: 14793 Heap Blocks: exact=12929 Buffers: shared hit=13054 -> Bitmap Index Scan on idx_tb_2 (cost=0.00..511.50 rows=1000 width=0) (actual time=67.589..67.589 rows=14794 loops=1) Index Cond: (tb.info ~ 'e65[\d]{
2}a[b]{
1,2}8'::text) Buffers: shared hit=125 Planning time: 0.493 ms Execution time: 120.618 ms (14 rows) Time: 124.693 ms

优化:

使用gin索引后,需要考虑性能问题,因为info字段被打散成了多个char(3)的token,从而涉及到非常多的索引条目,如果有非常高并发的插入,最好把gin_pending_list_limit设大,来提高插入效率,降低实时合并索引带来的RT升高。
使用了fastupdate后,会在每次vacuum表时,自动将pengding的信息合并到GIN索引中。
还有一点,查询不会有合并的动作,对于没有合并的GIN信息是使用遍历的方式搜索的。

压测高并发的性能:

create table tbl(id serial8, crt_time timestamp, sensorid int, sensorloc point, info text) with (autovacuum_enabled=on, autovacuum_vacuum_threshold=0.000001,autovacuum_vacuum_cost_delay=0);  CREATE INDEX trgm_idx ON tbl USING GIN (info gin_trgm_ops) with (fastupdate='on', gin_pending_list_limit='6553600');  alter sequence tbl_id_seq cache 10000;

修改配置,让数据库的autovacuum快速迭代合并gin。

vi $PGDATA/postgresql.conf  autovacuum_naptime=1s  maintenance_work_mem=1GB  autovacuum_work_mem=1GB  autovacuum = on  autovacuum_max_workers = 3  log_autovacuum_min_duration = 0  autovacuum_vacuum_cost_delay=0  $ pg_ctl reload

创建一个测试函数,用来产生随机的测试数据。

postgres=# create or replace function f() returns void as $$    insert into tbl (crt_time,sensorid,info) values ( clock_timestamp(),trunc(random()*500000),substring(md5(random()::text),1,8) );  $$ language sql strict;  vi test.sql  select f();  pgbench -M prepared -n -r -P 1 -f ./test.sql -c 48 -j 48 -T 10000  progress: 50.0 s, 52800.9 tps, lat 0.453 ms stddev 0.390  progress: 51.0 s, 52775.8 tps, lat 0.453 ms stddev 0.398  progress: 52.0 s, 53173.2 tps, lat 0.449 ms stddev 0.371  progress: 53.0 s, 53010.0 tps, lat 0.451 ms stddev 0.390  progress: 54.0 s, 53360.9 tps, lat 0.448 ms stddev 0.365  progress: 55.0 s, 53285.0 tps, lat 0.449 ms stddev 0.362  progress: 56.0 s, 53662.1 tps, lat 0.445 ms stddev 0.368  progress: 57.0 s, 53283.8 tps, lat 0.448 ms stddev 0.385  progress: 58.0 s, 53703.4 tps, lat 0.445 ms stddev 0.355  progress: 59.0 s, 53818.7 tps, lat 0.444 ms stddev 0.344  progress: 60.0 s, 53889.2 tps, lat 0.443 ms stddev 0.361  progress: 61.0 s, 53613.8 tps, lat 0.446 ms stddev 0.355  progress: 62.0 s, 53339.9 tps, lat 0.448 ms stddev 0.392  progress: 63.0 s, 54014.9 tps, lat 0.442 ms stddev 0.346  progress: 64.0 s, 53112.1 tps, lat 0.450 ms stddev 0.374  progress: 65.0 s, 53706.1 tps, lat 0.445 ms stddev 0.367  progress: 66.0 s, 53720.9 tps, lat 0.445 ms stddev 0.353  progress: 67.0 s, 52858.1 tps, lat 0.452 ms stddev 0.415  progress: 68.0 s, 53218.9 tps, lat 0.449 ms stddev 0.387  progress: 69.0 s, 53403.0 tps, lat 0.447 ms stddev 0.377  progress: 70.0 s, 53179.9 tps, lat 0.449 ms stddev 0.377  progress: 71.0 s, 53232.4 tps, lat 0.449 ms stddev 0.373  progress: 72.0 s, 53011.7 tps, lat 0.451 ms stddev 0.386  progress: 73.0 s, 52685.1 tps, lat 0.454 ms stddev 0.384  progress: 74.0 s, 52937.8 tps, lat 0.452 ms stddev 0.377

按照这个速度,一天能支持超过40亿数据入库。

接下来对比一下字符串分离的例子,这个例子适用于字符串长度固定,并且很小的场景,如果字符串长度不固定,这种方法没用。

适用splict的方法,测试数据不尽人意,所以还是用pg_trgm比较靠谱。

postgres=# create table t_split(id int, crt_time timestamp, sensorid int, sensorloc point, info text, c1 char(1), c2 char(1), c3 char(1), c4 char(1), c5 char(1), c6 char(1), c7 char(1), c8 char(1));  CREATE TABLE  Time: 2.123 ms  postgres=# insert into t_split(id,crt_time,sensorid,info,c1,c2,c3,c4,c5,c6,c7,c8) select id,ct,sen,info,substring(info,1,1),substring(info,2,1),substring(info,3,1),substring(info,4,1),substring(info,5,1),substring(info,6,1),substring(info,7,1),substring(info,8,1) from (select id, clock_timestamp() ct, trunc(random()*500000) sen, substring(md5(random()::text), 1, 8) info from generate_series(1,10000000) t(id)) t;  INSERT 0 10000000  Time: 81829.274 ms  postgres=# create index idx1 on t_split (c1);  postgres=# create index idx2 on t_split (c2);  postgres=# create index idx3 on t_split (c3);  postgres=# create index idx4 on t_split (c4);  postgres=# create index idx5 on t_split (c5);  postgres=# create index idx6 on t_split (c6);  postgres=# create index idx7 on t_split (c7);  postgres=# create index idx8 on t_split (c8);  postgres=# create index idx9 on t_split using gin (info gin_trgm_ops);  postgres=# select * from t_split limit 1;   id |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   ----+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----    1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9  (1 row)  postgres=# select * from t_split where info ~ '^3[\d]?eed[\d]?79$' limit 10;   id |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   ----+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----    1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9  (1 row)  Time: 133.041 ms  postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_split where info ~ '^3[\d]?eed[\d]?79$' limit 10;                                                              QUERY PLAN                                                              ----------------------------------------------------------------------------------------------------------------------------------   Limit  (cost=575.75..612.78 rows=10 width=57) (actual time=92.406..129.838 rows=1 loops=1)     Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8     Buffers: shared hit=13798     ->  Bitmap Heap Scan on public.t_split  (cost=575.75..4278.56 rows=1000 width=57) (actual time=92.403..129.833 rows=1 loops=1)           Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8           Recheck Cond: (t_split.info ~ '^3[\d]?eed[\d]?79$'::text)           Rows Removed by Index Recheck: 14690           Heap Blocks: exact=13669           Buffers: shared hit=13798           ->  Bitmap Index Scan on idx9  (cost=0.00..575.50 rows=1000 width=0) (actual time=89.576..89.576 rows=14691 loops=1)                 Index Cond: (t_split.info ~ '^3[\d]?eed[\d]?79$'::text)                 Buffers: shared hit=129   Planning time: 0.385 ms   Execution time: 129.883 ms  (14 rows)  Time: 130.678 ms  postgres=# select * from t_split where c1='3' and c3='e' and c4='e' and c5='d' and c7='7' and c8='9' and c2 between '0' and '9' and c6 between '0' and '9' limit 10;   id |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   ----+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----    1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9  (1 row)  Time: 337.367 ms  postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_split where c1='3' and c3='e' and c4='e' and c5='d' and c7='7' and c8='9' and c2 between '0' and '9' and c6 between '0' and '9' limit 10;                                                                                                                   QUERY PLAN                                                                                                                   --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------   Limit  (cost=33582.31..41499.35 rows=1 width=57) (actual time=339.230..344.675 rows=1 loops=1)     Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8     Buffers: shared hit=7581     ->  Bitmap Heap Scan on public.t_split  (cost=33582.31..41499.35 rows=1 width=57) (actual time=339.228..344.673 rows=1 loops=1)           Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8           Recheck Cond: ((t_split.c3 = 'e'::bpchar) AND (t_split.c8 = '9'::bpchar) AND (t_split.c5 = 'd'::bpchar))           Filter: ((t_split.c2 >= '0'::bpchar) AND (t_split.c2 <= '9'::bpchar) AND (t_split.c6 >= '0'::bpchar) AND (t_split.c6 <= '9'::bpchar) AND (t_split.c1 = '3'::bpchar) AND (t_split.c4 = 'e'::bpchar) AND (t_split.c7 = '7'::bpchar))           Rows Removed by Filter: 2480           Heap Blocks: exact=2450           Buffers: shared hit=7581           ->  BitmapAnd  (cost=33582.31..33582.31 rows=2224 width=0) (actual time=338.512..338.512 rows=0 loops=1)                 Buffers: shared hit=5131                 ->  Bitmap Index Scan on idx3  (cost=0.00..11016.93 rows=596333 width=0) (actual time=104.418..104.418 rows=624930 loops=1)                       Index Cond: (t_split.c3 = 'e'::bpchar)                       Buffers: shared hit=1711                 ->  Bitmap Index Scan on idx8  (cost=0.00..11245.44 rows=608667 width=0) (actual time=100.185..100.185 rows=625739 loops=1)                       Index Cond: (t_split.c8 = '9'::bpchar)                       Buffers: shared hit=1712                 ->  Bitmap Index Scan on idx5  (cost=0.00..11319.44 rows=612667 width=0) (actual time=99.480..99.480 rows=624269 loops=1)                       Index Cond: (t_split.c5 = 'd'::bpchar)                       Buffers: shared hit=1708   Planning time: 0.262 ms   Execution time: 344.731 ms  (23 rows)  Time: 346.424 ms  postgres=# select * from t_split where info ~ '^33.+7.+9$' limit 10;     id   |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   --------+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----        1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9    24412 | 2016-03-02 09:58:04.186359 |   251599 |           | 33f07429 | 3  | 3  | f  | 0  | 7  | 4  | 2  | 9    24989 | 2016-03-02 09:58:04.191112 |   214569 |           | 334587d9 | 3  | 3  | 4  | 5  | 8  | 7  | d  | 9    50100 | 2016-03-02 09:58:04.398499 |   409819 |           | 33beb7b9 | 3  | 3  | b  | e  | b  | 7  | b  | 9    92623 | 2016-03-02 09:58:04.745372 |   280100 |           | 3373e719 | 3  | 3  | 7  | 3  | e  | 7  | 1  | 9   106054 | 2016-03-02 09:58:04.855627 |   155192 |           | 33c575c9 | 3  | 3  | c  | 5  | 7  | 5  | c  | 9   107070 | 2016-03-02 09:58:04.863827 |   464325 |           | 337dd729 | 3  | 3  | 7  | d  | d  | 7  | 2  | 9   135152 | 2016-03-02 09:58:05.088217 |   240500 |           | 336271d9 | 3  | 3  | 6  | 2  | 7  | 1  | d  | 9   156425 | 2016-03-02 09:58:05.25805  |   218202 |           | 333e7289 | 3  | 3  | 3  | e  | 7  | 2  | 8  | 9   170210 | 2016-03-02 09:58:05.368371 |   132530 |           | 33a8d789 | 3  | 3  | a  | 8  | d  | 7  | 8  | 9  (10 rows)  Time: 20.431 ms  postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_split where info ~ '^33.+7.+9$' limit 10;                                                             QUERY PLAN                                                              ---------------------------------------------------------------------------------------------------------------------------------   Limit  (cost=43.75..80.78 rows=10 width=57) (actual time=19.573..21.212 rows=10 loops=1)     Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8     Buffers: shared hit=566     ->  Bitmap Heap Scan on public.t_split  (cost=43.75..3746.56 rows=1000 width=57) (actual time=19.571..21.206 rows=10 loops=1)           Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8           Recheck Cond: (t_split.info ~ '^33.+7.+9$'::text)           Rows Removed by Index Recheck: 647           Heap Blocks: exact=552           Buffers: shared hit=566           ->  Bitmap Index Scan on idx9  (cost=0.00..43.50 rows=1000 width=0) (actual time=11.712..11.712 rows=39436 loops=1)                 Index Cond: (t_split.info ~ '^33.+7.+9$'::text)                 Buffers: shared hit=14   Planning time: 0.301 ms   Execution time: 21.255 ms  (14 rows)  Time: 21.995 ms  postgres=# select * from t_split where c1='3' and c2='3' and c8='9' and (c4='7' or c5='7' or c6='7') limit 10;     id   |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   --------+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----        1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9    24412 | 2016-03-02 09:58:04.186359 |   251599 |           | 33f07429 | 3  | 3  | f  | 0  | 7  | 4  | 2  | 9    24989 | 2016-03-02 09:58:04.191112 |   214569 |           | 334587d9 | 3  | 3  | 4  | 5  | 8  | 7  | d  | 9    50100 | 2016-03-02 09:58:04.398499 |   409819 |           | 33beb7b9 | 3  | 3  | b  | e  | b  | 7  | b  | 9    92623 | 2016-03-02 09:58:04.745372 |   280100 |           | 3373e719 | 3  | 3  | 7  | 3  | e  | 7  | 1  | 9   106054 | 2016-03-02 09:58:04.855627 |   155192 |           | 33c575c9 | 3  | 3  | c  | 5  | 7  | 5  | c  | 9   107070 | 2016-03-02 09:58:04.863827 |   464325 |           | 337dd729 | 3  | 3  | 7  | d  | d  | 7  | 2  | 9   135152 | 2016-03-02 09:58:05.088217 |   240500 |           | 336271d9 | 3  | 3  | 6  | 2  | 7  | 1  | d  | 9   156425 | 2016-03-02 09:58:05.25805  |   218202 |           | 333e7289 | 3  | 3  | 3  | e  | 7  | 2  | 8  | 9   170210 | 2016-03-02 09:58:05.368371 |   132530 |           | 33a8d789 | 3  | 3  | a  | 8  | d  | 7  | 8  | 9  (10 rows)  Time: 37.739 ms  postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_split where c1='3' and c2='3' and c8='9' and (c4='7' or c5='7' or c6='7') limit 10;                                                                                                 QUERY PLAN                                                                                                  ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------   Limit  (cost=0.00..8135.78 rows=10 width=57) (actual time=0.017..35.532 rows=10 loops=1)     Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8     Buffers: shared hit=1755     ->  Seq Scan on public.t_split  (cost=0.00..353093.00 rows=434 width=57) (actual time=0.015..35.526 rows=10 loops=1)           Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8           Filter: ((t_split.c1 = '3'::bpchar) AND (t_split.c2 = '3'::bpchar) AND (t_split.c8 = '9'::bpchar) AND ((t_split.c4 = '7'::bpchar) OR (t_split.c5 = '7'::bpchar) OR (t_split.c6 = '7'::bpchar)))           Rows Removed by Filter: 170200           Buffers: shared hit=1755   Planning time: 0.210 ms   Execution time: 35.572 ms  (10 rows)  Time: 36.260 ms  postgres=# select * from t_split where info ~ '^3.?[b-g]+ed[\d]+79' order by info <-> '^3.?[b-g]+ed[\d]+79' limit 10;     id    |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   ---------+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----         1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9   1308724 | 2016-03-02 09:58:14.590901 |   458822 |           | 3fed9479 | 3  | f  | e  | d  | 9  | 4  | 7  | 9   2866024 | 2016-03-02 09:58:27.20105  |   106467 |           | 3fed2279 | 3  | f  | e  | d  | 2  | 2  | 7  | 9   4826729 | 2016-03-02 09:58:42.907431 |   228023 |           | 3ded9879 | 3  | d  | e  | d  | 9  | 8  | 7  | 9   6113373 | 2016-03-02 09:58:53.211146 |   499702 |           | 36fed479 | 3  | 6  | f  | e  | d  | 4  | 7  | 9   1768237 | 2016-03-02 09:58:18.310069 |   345027 |           | 30fed079 | 3  | 0  | f  | e  | d  | 0  | 7  | 9   1472324 | 2016-03-02 09:58:15.913629 |   413283 |           | 3eed5798 | 3  | e  | e  | d  | 5  | 7  | 9  | 8   8319056 | 2016-03-02 09:59:10.902137 |   336740 |           | 3ded7790 | 3  | d  | e  | d  | 7  | 7  | 9  | 0   8576573 | 2016-03-02 09:59:12.962923 |   130223 |           | 3eed5793 | 3  | e  | e  | d  | 5  | 7  | 9  | 3  (9 rows)  Time: 268.661 ms  postgres=# explain (analyze,verbose,timing,buffers,costs) select * from t_split where info ~ '^3.?[b-g]+ed[\d]+79' order by info <-> '^3.?[b-g]+ed[\d]+79' limit 10;                                                                 QUERY PLAN                                                                  -----------------------------------------------------------------------------------------------------------------------------------------   Limit  (cost=4302.66..4302.69 rows=10 width=57) (actual time=269.214..269.217 rows=9 loops=1)     Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8, ((info <-> '^3.?[b-g]+ed[\d]+79'::text))     Buffers: shared hit=52606     ->  Sort  (cost=4302.66..4305.16 rows=1000 width=57) (actual time=269.212..269.212 rows=9 loops=1)           Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8, ((info <-> '^3.?[b-g]+ed[\d]+79'::text))           Sort Key: ((t_split.info <-> '^3.?[b-g]+ed[\d]+79'::text))           Sort Method: quicksort  Memory: 26kB           Buffers: shared hit=52606           ->  Bitmap Heap Scan on public.t_split  (cost=575.75..4281.06 rows=1000 width=57) (actual time=100.771..269.180 rows=9 loops=1)                 Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8, (info <-> '^3.?[b-g]+ed[\d]+79'::text)                 Recheck Cond: (t_split.info ~ '^3.?[b-g]+ed[\d]+79'::text)                 Rows Removed by Index Recheck: 72929                 Heap Blocks: exact=52479                 Buffers: shared hit=52606                 ->  Bitmap Index Scan on idx9  (cost=0.00..575.50 rows=1000 width=0) (actual time=88.062..88.062 rows=72938 loops=1)                       Index Cond: (t_split.info ~ '^3.?[b-g]+ed[\d]+79'::text)                       Buffers: shared hit=127   Planning time: 0.640 ms   Execution time: 269.287 ms  (19 rows)  Time: 270.430 ms  postgres=# select * from t_split where info ~ '3.?[b-g]+ed[\d]+79' order by info <-> '3.?[b-g]+ed[\d]+79' limit 10;     id    |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   ---------+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----         1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9   1308724 | 2016-03-02 09:58:14.590901 |   458822 |           | 3fed9479 | 3  | f  | e  | d  | 9  | 4  | 7  | 9   4826729 | 2016-03-02 09:58:42.907431 |   228023 |           | 3ded9879 | 3  | d  | e  | d  | 9  | 8  | 7  | 9   5250603 | 2016-03-02 09:58:46.300289 |   250582 |           | d3eed179 | d  | 3  | e  | e  | d  | 1  | 7  | 9   6113373 | 2016-03-02 09:58:53.211146 |   499702 |           | 36fed479 | 3  | 6  | f  | e  | d  | 4  | 7  | 9   1768237 | 2016-03-02 09:58:18.310069 |   345027 |           | 30fed079 | 3  | 0  | f  | e  | d  | 0  | 7  | 9   2866024 | 2016-03-02 09:58:27.20105  |   106467 |           | 3fed2279 | 3  | f  | e  | d  | 2  | 2  | 7  | 9   1472324 | 2016-03-02 09:58:15.913629 |   413283 |           | 3eed5798 | 3  | e  | e  | d  | 5  | 7  | 9  | 8   8576573 | 2016-03-02 09:59:12.962923 |   130223 |           | 3eed5793 | 3  | e  | e  | d  | 5  | 7  | 9  | 3   8319056 | 2016-03-02 09:59:10.902137 |   336740 |           | 3ded7790 | 3  | d  | e  | d  | 7  | 7  | 9  | 0  (10 rows)  Time: 320.525 ms  postgres=# explain (analyze,verbose,buffers,costs,timing) select * from t_split where info ~ '3.?[b-g]+ed[\d]+79' order by info <-> '3.?[b-g]+ed[\d]+79' limit 10;                                                                  QUERY PLAN                                                                  ------------------------------------------------------------------------------------------------------------------------------------------   Limit  (cost=4302.66..4302.69 rows=10 width=57) (actual time=319.925..319.927 rows=10 loops=1)     Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8, ((info <-> '3.?[b-g]+ed[\d]+79'::text))     Buffers: shared hit=52602     ->  Sort  (cost=4302.66..4305.16 rows=1000 width=57) (actual time=319.923..319.923 rows=10 loops=1)           Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8, ((info <-> '3.?[b-g]+ed[\d]+79'::text))           Sort Key: ((t_split.info <-> '3.?[b-g]+ed[\d]+79'::text))           Sort Method: quicksort  Memory: 26kB           Buffers: shared hit=52602           ->  Bitmap Heap Scan on public.t_split  (cost=575.75..4281.06 rows=1000 width=57) (actual time=104.526..319.885 rows=10 loops=1)                 Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8, (info <-> '3.?[b-g]+ed[\d]+79'::text)                 Recheck Cond: (t_split.info ~ '3.?[b-g]+ed[\d]+79'::text)                 Rows Removed by Index Recheck: 72928                 Heap Blocks: exact=52479                 Buffers: shared hit=52602                 ->  Bitmap Index Scan on idx9  (cost=0.00..575.50 rows=1000 width=0) (actual time=91.945..91.945 rows=72938 loops=1)                       Index Cond: (t_split.info ~ '3.?[b-g]+ed[\d]+79'::text)                       Buffers: shared hit=123   Planning time: 0.948 ms   Execution time: 320.003 ms  (19 rows)  Time: 321.502 ms

大数据量性能测试:

模拟分区表,每小时一个分区,每小时数据量5000万,一天12亿,一个月360亿。

drop table tbl cascade;  create table tbl (id serial8, crt_time timestamp, sensorid int, sensorloc point, info text);  do language plpgsql $$  declare    v_s timestamp := '2016-01-01 00:00:00';  begin    for i in 1..720 loop      execute 'create table tbl_'||to_char(v_s,'yyyymmddhh24')||' (id int8 not null default nextval(''tbl_id_seq''::regclass), crt_time timestamp check (crt_time >= '''||to_char(v_s,'yyyy-mm-dd hh24:mi:ss')||''' and crt_time <'''||to_char(v_s+'1 h'::interval,'yyyy-mm-dd hh24:mi:ss')||'''), sensorid int, sensorloc point, info text) inherits (tbl)';      v_s := v_s + '1 h'::interval;    end loop;  end;  $$;  alter sequence tbl_id_seq cache 100000;

生成插入SQL

do language plpgsql $$  declare    v_s timestamp := '2016-01-01 00:00:00';  begin    for i in 1..720 loop      raise notice '%', 'psql -c "insert into tbl_'||to_char(v_s,'yyyymmddhh24')||' (crt_time, sensorid, info) select '''||to_char(v_s,'yyyy-mm-dd hh24:mi:ss')||''',trunc(random()*500000), substring(md5(random()::text),1,8) from generate_series(1,50000000);" &';      v_s := v_s + '1 h'::interval;    end loop;  end;  $$;

性能指标, 范围扫描, 落到单表5000万的数据量内, 毫秒级返回.

postgres=# explain (analyze,verbose,timing,buffers,costs) select * from tbl where crt_time between '2016-01-01 12:00:00' and '2016-01-01 12:30:00' and info ~ 'f[\d]{
2}e27e0$' order by info <-> 'f[\d]{
2}e27e0$' limit 10; QUERY PLAN --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Limit (cost=18918.83..18918.85 rows=10 width=45) (actual time=350.296..350.297 rows=2 loops=1) Output: tbl.id, tbl.crt_time, tbl.sensorid, tbl.sensorloc, tbl.info, ((tbl.info <-> 'f[\d]{
2}e27e0$'::text)) Buffers: shared hit=4530 -> Sort (cost=18918.83..18931.33 rows=5001 width=45) (actual time=350.294..350.295 rows=2 loops=1) Output: tbl.id, tbl.crt_time, tbl.sensorid, tbl.sensorloc, tbl.info, ((tbl.info <-> 'f[\d]{
2}e27e0$'::text)) Sort Key: ((tbl.info <-> 'f[\d]{
2}e27e0$'::text)) Sort Method: quicksort Memory: 25kB Buffers: shared hit=4530 -> Result (cost=0.00..18810.76 rows=5001 width=45) (actual time=347.995..350.279 rows=2 loops=1) Output: tbl.id, tbl.crt_time, tbl.sensorid, tbl.sensorloc, tbl.info, (tbl.info <-> 'f[\d]{
2}e27e0$'::text) Buffers: shared hit=4530 -> Append (cost=0.00..18798.26 rows=5001 width=45) (actual time=347.976..350.254 rows=2 loops=1) Buffers: shared hit=4530 -> Seq Scan on public.tbl (cost=0.00..0.00 rows=1 width=68) (actual time=0.001..0.001 rows=0 loops=1) Output: tbl.id, tbl.crt_time, tbl.sensorid, tbl.sensorloc, tbl.info Filter: ((tbl.crt_time >= '2016-01-01 12:00:00'::timestamp without time zone) AND (tbl.crt_time <= '2016-01-01 12:30:00'::timestamp without time zone) AND (tbl.info ~ 'f[\d]{
2}e27e0$'::text)) -> Bitmap Heap Scan on public.tbl_2016010112 (cost=574.75..18798.26 rows=5000 width=45) (actual time=347.972..350.249 rows=2 loops=1) Output: tbl_2016010112.id, tbl_2016010112.crt_time, tbl_2016010112.sensorid, tbl_2016010112.sensorloc, tbl_2016010112.info Recheck Cond: (tbl_2016010112.info ~ 'f[\d]{
2}e27e0$'::text) Rows Removed by Index Recheck: 4100 Filter: ((tbl_2016010112.crt_time >= '2016-01-01 12:00:00'::timestamp without time zone) AND (tbl_2016010112.crt_time <= '2016-01-01 12:30:00'::timestamp without time zone)) Heap Blocks: exact=4085 Buffers: shared hit=4530 -> Bitmap Index Scan on idx_tbl_2016010112 (cost=0.00..573.50 rows=5000 width=0) (actual time=337.125..337.125 rows=4102 loops=1) Index Cond: (tbl_2016010112.info ~ 'f[\d]{
2}e27e0$'::text) Buffers: shared hit=445 Planning time: 23.913 ms Execution time: 350.383 ms (28 rows) postgres=# select * from tbl where crt_time between '2016-01-01 12:00:00' and '2016-01-01 12:30:00' and info ~ 'f[\d]{
2}e27e0$' order by info <-> 'f[\d]{
2}e27e0$' limit 10; id | crt_time | sensorid | sensorloc | info ------------+---------------------+----------+-----------+---------- 1982100172 | 2016-01-01 12:00:00 | 336772 | | f48e27e0 2292713691 | 2016-01-01 12:00:00 | 489110 | | f77e27e0 (2 rows)

单表144亿的正则和模糊查询性能测试:

postgres=# \dt+ t_all                      List of relations   Schema | Name  | Type  |  Owner   |  Size  | Description   --------+-------+-------+----------+--------+-------------   public | t_all | table | postgres | 811 GB |   (1 row)  postgres=# \d t_all                  Table "public.t_all"    Column   |            Type             | Modifiers   -----------+-----------------------------+-----------   id        | bigint                      | not null   crt_time  | timestamp without time zone |    sensorid  | integer                     |    sensorloc | point                       |    info      | text                        |   postgres=# select count(*) from t_all;      count     -------------   14456717312  (1 row)  postgres=# select * from t_all limit 10;       id     |      crt_time       | sensorid | sensorloc |   info     ------------+---------------------+----------+-----------+----------   6519272065 | 2016-01-06 10:00:00 |   493013 |           | 62255c83   6519272066 | 2016-01-06 10:00:00 |   309676 |           | f6c98800   6519272067 | 2016-01-06 10:00:00 |    43859 |           | 125a1191   6519272068 | 2016-01-06 10:00:00 |   495624 |           | e75cfd71   6519272069 | 2016-01-06 10:00:00 |    10362 |           | 7171f11c   6519272070 | 2016-01-06 10:00:00 |   231476 |           | 4201f809   6519272071 | 2016-01-06 10:00:00 |    43080 |           | a47e84e5   6519272072 | 2016-01-06 10:00:00 |   131292 |           | 17bc248e   6519272073 | 2016-01-06 10:00:00 |   486841 |           | 3303097c   6519272074 | 2016-01-06 10:00:00 |   491503 |           | f0c53fee  (10 rows)

测试数据后续放出,分表后做到秒级是没有问题的。信心从何而来呢?

因为瓶颈不在IO上,主要在数据的recheck, 把144亿数据拆分成29个5亿的表,并行执行,秒出是有可能的。

来看一个单表5亿的测试结果,秒出:

postgres=# explain (verbose,analyze,buffers,timing,costs) select * from tbl1 where info ~ 'aad.+f02' limit 10;                                                               QUERY PLAN                                                                ----------------------------------------------------------------------------------------------------------------------------------------- Limit  (cost=1439.79..1476.19 rows=10 width=29) (actual time=116.570..116.719 rows=10 loops=1)   Output: id, crt_time, sensorid, info   Buffers: shared hit=680   ->  Bitmap Heap Scan on public.tbl1  (cost=1439.79..191054.88 rows=52103 width=29) (actual time=116.568..116.716 rows=10 loops=1)         Output: id, crt_time, sensorid, info         Recheck Cond: (tbl1.info ~ 'aad.+f02'::text)         Rows Removed by Index Recheck: 38         Heap Blocks: exact=48         Buffers: shared hit=680         ->  Bitmap Index Scan on tbl1_info_idx  (cost=0.00..1426.77 rows=52103 width=0) (actual time=116.495..116.495 rows=403 loops=1)               Index Cond: (tbl1.info ~ 'aad.+f02'::text)               Buffers: shared hit=632 Planning time: 0.311 ms Execution time: 116.754 ms(14 rows)Time: 117.422 mspostgres=# select * from tbl1 where info ~ 'aad.+f02' limit 10;    id     |          crt_time          | sensorid |   info   -----------+----------------------------+----------+----------  17986922 | 2016-02-29 17:42:42.427639 |    75863 | aad3f02a  19873247 | 2016-02-29 17:43:16.714945 |   174971 | 2aad5f02  23798336 | 2016-02-29 17:44:35.369654 |   202085 | aad06f02  28630866 | 2016-02-29 17:46:03.544462 |   463184 | baad3f02  31458529 | 2016-02-29 17:47:00.300937 |   411670 | aad1af02  52009687 | 2016-02-29 17:53:15.466246 |   192821 | 5aad6f02  80769909 | 2016-02-29 18:01:31.074248 |    47993 | aadcf029  80825896 | 2016-02-29 18:01:31.039063 |   284712 | aad14f02  83385996 | 2016-02-29 18:02:12.699317 |    78233 | daadcf02 102814316 | 2016-02-29 18:08:20.891412 |   359635 | aad06f02(10 rows)Time: 116.901 ms

全表扫描需要,

postgres=# set enable_bitmapscan=off;SETTime: 0.145 mspostgres=# select * from tbl1 where info ~ 'aad.+f02' limit 10;    id     |          crt_time          | sensorid |   info   -----------+----------------------------+----------+----------  31458529 | 2016-02-29 17:47:00.300937 |   411670 | aad1af02  52009687 | 2016-02-29 17:53:15.466246 |   192821 | 5aad6f02  80769909 | 2016-02-29 18:01:31.074248 |    47993 | aadcf029  80825896 | 2016-02-29 18:01:31.039063 |   284712 | aad14f02  83385996 | 2016-02-29 18:02:12.699317 |    78233 | daadcf02 102814316 | 2016-02-29 18:08:20.891412 |   359635 | aad06f02 105236847 | 2016-02-29 18:09:56.914795 |      876 | aadbf026 108524272 | 2016-02-29 18:10:47.39312  |   338071 | 2aad2f02 128169786 | 2016-02-29 18:17:52.105948 |   262400 | aad0f028 135935810 | 2016-02-29 18:20:43.265139 |   487673 | aad7f021(10 rows)Time: 98903.073 ms

性能对比图表:

1000万数据对比
5亿数据对比
1000万数据btree bit or|and与gin对比
144亿分区表对比

大数据量的优化方法,例如百亿级别以上的数据量,如何能做到秒级的模糊查询响应。

对于单机,可以使用分区,同时使用并行查询,充分使用CPU的功能。
或者使用MPP, SHARDING架构,利用多机的资源。

原则,减少recheck,尽量扫描搜索到最终需要的结果(大量扫描,大量remove checked false row, 全表和索引都存在这种现象)

[补充]

.1. 测试用的主机配置简单描述
普通x86, 24核,1xxG 内存,SSD硬盘。

.2. 收到了一位朋友的疑问,

德哥,首先要问你一个问题, 为什么你使用md5 前8位生成 数据 ? md5 最小位数就是16位 , 你这样做究竟有什么数学原因导致要前8位字符?

回复如下:

首先MD5计算的结果是一个128bit的hex,PostgreSQL将结果以文本的形式输出,所以看到的是32位长度的字符串,

rfc13213.1 Step 1. Append Padding Bits3.2 Step 2. Append Length3.3 Step 3. Initialize MD Buffer3.4 Step 4. Process Message in 16-Word Blocks3.5 Step 5. Output4. Summary   The MD5 message-digest algorithm is simple to implement, and provides   a "fingerprint" or message digest of a message of arbitrary length.   It is conjectured that the difficulty of coming up with two messages   having the same message digest is on the order of 2^64 operations,   and that the difficulty of coming up with any message having a given   message digest is on the order of 2^128 operations. The MD5 algorithm   has been carefully scrutinized for weaknesses. It is, however, a   relatively new algorithm and further security analysis is of course   justified, as is the case with any new proposal of this sort.PG代码/* * Create an md5 hash of a text string and return it as hex * * md5 produces a 16 byte (128 bit) hash; double it for hex */#define MD5_HASH_LEN  32Datummd5_text(PG_FUNCTION_ARGS){    text       *in_text = PG_GETARG_TEXT_PP(0);    size_t      len;    char        hexsum[MD5_HASH_LEN + 1];    /* Calculate the length of the buffer using varlena metadata */    len = VARSIZE_ANY_EXHDR(in_text);    /* get the hash result */    if (pg_md5_hash(VARDATA_ANY(in_text), len, hexsum) == false)        ereport(ERROR,                (errcode(ERRCODE_OUT_OF_MEMORY),                 errmsg("out of memory")));    /* convert to text and return it */    PG_RETURN_TEXT_P(cstring_to_text(hexsum));}/* *  pg_md5_hash * *  Calculates the MD5 sum of the bytes in a buffer. * *  SYNOPSIS      #include "md5.h" *                int pg_md5_hash(const void *buff, size_t len, char *hexsum) * *  INPUT         buff    the buffer containing the bytes that you want *                        the MD5 sum of. *                len     number of bytes in the buffer. * *  OUTPUT        hexsum  the MD5 sum as a '\0'-terminated string of *                        hexadecimal digits.  an MD5 sum is 16 bytes long. *                        each byte is represented by two heaxadecimal *                        characters.  you thus need to provide an array *                        of 33 characters, including the trailing '\0'. * *  RETURNS       false on failure (out of memory for internal buffers) or *                true on success. * *  STANDARDS     MD5 is described in RFC 1321. * *  AUTHOR        Sverre H. Huseby 
* */boolpg_md5_hash(const void *buff, size_t len, char *hexsum){ uint8 sum[16]; if (!calculateDigestFromBuffer(buff, len, sum)) return false; bytesToHex(sum, hexsum); return true;}static intcalculateDigestFromBuffer(const uint8 *b, uint32 len, uint8 sum[16]){ register uint32 i, j, k, newI; uint32 l; uint8 *input; register uint32 *wbp; uint32 workBuff[16], state[4]; l = len; state[0] = 0x67452301; state[1] = 0xEFCDAB89; state[2] = 0x98BADCFE; state[3] = 0x10325476; if ((input = createPaddedCopyWithLength(b, &l)) == NULL) return 0; for (i = 0;;) { if ((newI = i + 16 * 4) > l) break; k = i + 3; for (j = 0; j < 16; j++) { wbp = (workBuff + j); *wbp = input[k--]; *wbp <<= 8; *wbp |= input[k--]; *wbp <<= 8; *wbp |= input[k--]; *wbp <<= 8; *wbp |= input[k]; k += 7; } doTheRounds(workBuff, state); i = newI; } free(input); j = 0; for (i = 0; i < 4; i++) { k = state[i]; sum[j++] = (k & 0xff); k >>= 8; sum[j++] = (k & 0xff); k >>= 8; sum[j++] = (k & 0xff); k >>= 8; sum[j++] = (k & 0xff); } return 1;}
postgres=# select length(md5(random()::text)),md5(random()::text) from generate_series(1,10); length |               md5                --------+----------------------------------     32 | 4b0fcafd0f9d189cceade2812e4aa396     32 | 9169f49f0c059a65de3325a20068eb8e     32 | 7df4b60638972f1372fde91e3d2eee50     32 | 4fc6816aa88224163dda3e242f3e16f0     32 | 518870a2c8a9cfe6cba018916f5388a9     32 | b46b63c409532e5c973ddc27a5e49ce4     32 | e24e9d63926094046aa2b300dfa8e986     32 | 3f1ca7c5ce5159a0df17729f81e24925     32 | 5756f0925eca4c3801c4a49cf9b68023     32 | ed54795fcbe9491f4e5a00ec2cf323ee(10 rows)另外,截取前8位的目的是生成一个8位长的随机字符串,在车牌,QQ,条形码等数据类型中长度的一个折中。其实要测试16或32位长的随机字符串也可以的,我稍后更新一下对应长度的测试数据。感谢您的关注。还有一些PG文章推荐给您,了解一下PostgreSQL:高并发的优化http://blog.163.com/digoal@126/blog/static/16387704020159853541614/秒杀性能调优http://blog.163.com/digoal@126/blog/static/16387704020158149538415/每天万亿级记录流式处理http://blog.163.com/digoal@126/blog/static/1638770402015111543639382/百亿级数据量地理位置检索http://blog.163.com/digoal@126/blog/static/163877040201601875129497/水平分片http://blog.163.com/digoal@126/blog/static/16387704020161239252998/数字计算CPU硬解http://blog.163.com/digoal@126/blog/static/1638770402016237454462/PG的优化器逻辑推理能力源码剖析http://blog.163.com/digoal@126/blog/static/163877040201612374931160/TPC-C 极限调优https://github.com/digoal/pgsql_admin_script/blob/master/pgsql_perf_tuning

以下是32字符长的测试

单机10亿 32位长度 正则,模糊检索 性能图表:

详细记录:

插入10亿数据,每条记录存储32位长随机字符串。

postgres=# create table t_regexp (info text);  CREATE TABLE  postgres=# insert into t_regexp select md5(random()::text) from generate_series(1,1000000000);  INSERT 0 1000000000  postgres=# create index idx_t_regexp_gin on t_regexp using gin (info gin_trgm_ops);  CREATE INDEX  postgres=# create index idx_t_regexp_1 on t_regexp (info);  CREATE INDEX  postgres=# create index idx_t_regexp_2 on t_regexp (reverse(info));  CREATE INDEX

使用auto_explain收集性能测试数据:

load 'auto_explain';    set auto_explain.log_analyze =true;     set auto_explain.log_buffers =true;    set auto_explain.log_nested_statements=true;    set auto_explain.log_timing=true;    set auto_explain.log_triggers=true;    set auto_explain.log_verbose=true;    set auto_explain.log_min_duration=0;    set client_min_messages ='log';    set work_mem='2GB';

测试数据概貌,总记录数10亿, 唯一数约8亿 如下:

digoal=> select count(*) from t_regexp ;     count      ------------   1000000000  (1 row)  Time: 18547.746 ms  digoal=> select count(*) from (select info from t_regexp group by info) t;     count     -----------   799444838  (1 row)

带前缀模糊查询性能

有结果性能

digoal=# select ctid,* from t_regexp where info ~ '^9def5fe6343a5938b23af38444b7e' limit 10;  LOG:  duration: 0.351 ms  plan:  Query Text: select ctid,* from t_regexp where info ~ '^9def5fe6343a5938b23af38444b7e' limit 10;  Limit  (cost=0.15..8.17 rows=1 width=39) (actual time=0.152..0.346 rows=2 loops=1)    Output: ctid, info    ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=0.15..8.17 rows=1 width=39) (actual time=0.150..0.342 rows=2 loops=1)          Output: ctid, info       ctid     |               info                 --------------+----------------------------------   (14720,1)    | 9def5fe6343a5938b23af38444b7e350   (379127,105) | 9def5fe6343a5938b23af38444b7e350  (2 rows)  Time: 7.952 ms

无结果性能

digoal=# select ctid,* from t_regexp where info ~ '^9def5fe6343a5938b23af38444b7a' limit 10;  LOG:  duration: 0.447 ms  plan:  Query Text: select ctid,* from t_regexp where info ~ '^9def5fe6343a5938b23af38444b7a' limit 10;  Limit  (cost=0.15..8.17 rows=1 width=39) (actual time=0.443..0.443 rows=0 loops=1)    Output: ctid, info    ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=0.15..8.17 rows=1 width=39) (actual time=0.441..0.441 rows=0 loops=1)          Output: ctid, info   ctid | info   ------+------  (0 rows)  Time: 7.968 ms

带后缀模糊查询性能

有结果性能

digoal=# select ctid,* from t_regexp where reverse(info) ~ '^1e346e5efc7703f11495';  LOG:  duration: 5.287 ms  plan:  Query Text: select ctid,* from t_regexp where reverse(info) ~ '^1e346e5efc7703f11495';  Remote Fast Query Execution  (cost=0.00..0.00 rows=0 width=0) (actual time=4.943..5.281 rows=1 loops=1)    Output: t_regexp.ctid, t_regexp.info    Node/s: data1, data10, data11, data12, data13, data14, data15, data16, data2, data3, data4, data5, data6, data7, data8, data9    Remote query: SELECT ctid, info FROM t_regexp WHERE (reverse(info) ~ '^1e346e5efc7703f11495'::text)      ctid    |               info                 ------------+----------------------------------   (19928,46) | cc302768b6a459411f3077cfe5e643e1  (1 row)  Time: 6.079 ms

无结果性能

digoal=# select ctid,* from t_regexp where reverse(info) ~ '^1e346e5efc7703f11495123';  LOG:  duration: 4.157 ms  plan:  Query Text: select ctid,* from t_regexp where reverse(info) ~ '^1e346e5efc7703f11495123';  Remote Fast Query Execution  (cost=0.00..0.00 rows=0 width=0) (actual time=4.154..4.154 rows=0 loops=1)    Output: t_regexp.ctid, t_regexp.info    Node/s: data1, data10, data11, data12, data13, data14, data15, data16, data2, data3, data4, data5, data6, data7, data8, data9    Remote query: SELECT ctid, info FROM t_regexp WHERE (reverse(info) ~ '^1e346e5efc7703f11495123'::text)   ctid | info   ------+------  (0 rows)  Time: 4.930 ms

前后模糊查询性能

有结果性能

digoal=# select ctid,* from t_regexp where info ~ '6ccd8ca827b0526cd57a71c949' order by info <-> '6ccd8ca827b0526cd57a71c949' limit 10;  LOG:  duration: 3066.193 ms  plan:  Query Text: select ctid,* from t_regexp where info ~ '6ccd8ca827b0526cd57a71c949' order by info <-> '6ccd8ca827b0526cd57a71c949' limit 10;  Limit  (cost=72.03..72.03 rows=1 width=39) (actual time=3066.175..3066.176 rows=1 loops=1)    Output: ctid, info, ((info <-> '6ccd8ca827b0526cd57a71c949'::text))    ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=72.03..72.03 rows=1 width=39) (actual time=3066.173..3066.174 rows=1 loops=1)          Output: ctid, info, (info <-> '6ccd8ca827b0526cd57a71c949'::text)      ctid      |               info                 --------------+----------------------------------   (459019,106) | 8536ccd8ca827b0526cd57a71c949ab2  (1 row)  Time: 3074.907 ms

无结果性能

digoal=# select ctid,* from t_regexp where info ~ '6ccd8ca827b0526cd57a71c123' order by info <-> '6ccd8ca827b0526cd57a71c123' limit 10;  LOG:  duration: 3099.348 ms  plan:  Query Text: select ctid,* from t_regexp where info ~ '6ccd8ca827b0526cd57a71c123' order by info <-> '6ccd8ca827b0526cd57a71c123' limit 10;  Limit  (cost=72.03..72.03 rows=1 width=39) (actual time=3099.341..3099.341 rows=0 loops=1)    Output: ctid, info, ((info <-> '6ccd8ca827b0526cd57a71c123'::text))    ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=72.03..72.03 rows=1 width=39) (actual time=3099.339..3099.339 rows=0 loops=1)          Output: ctid, info, (info <-> '6ccd8ca827b0526cd57a71c123'::text)   ctid | info   ------+------  (0 rows)  Time: 3108.698 ms

使用了GIN索引

digoal=# explain (verbose) select ctid,* from t_regexp where info ~ '6ccd8ca827b0526cd57a71c123' order by info <-> '6ccd8ca827b0526cd57a71c123' limit 10;  LOG:  duration: 0.000 ms  plan:  Query Text: explain (verbose) select ctid,* from t_regexp where info ~ '6ccd8ca827b0526cd57a71c123' order by info <-> '6ccd8ca827b0526cd57a71c123' limit 10;  Limit  (cost=72.03..72.03 rows=1 width=39)    Output: ctid, info, ((info <-> '6ccd8ca827b0526cd57a71c123'::text))    ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=72.03..72.03 rows=1 width=39)          Output: ctid, info, (info <-> '6ccd8ca827b0526cd57a71c123'::text)          ->  Limit  (cost=72.03..72.03 rows=1 width=39)                Output: ctid, info, ((info <-> '6ccd8ca827b0526cd57a71c123'::text))                ->  Sort  (cost=72.03..72.03 rows=1 width=39)                      Output: ctid, info, ((info <-> '6ccd8ca827b0526cd57a71c123'::text))                      Sort Key: ((t_regexp.info <-> '6ccd8ca827b0526cd57a71c123'::text))                      ->  Bitmap Heap Scan on public.t_regexp  (cost=68.00..72.02 rows=1 width=39)                            Output: ctid, info, (info <-> '6ccd8ca827b0526cd57a71c123'::text)                            Recheck Cond: (t_regexp.info ~ '6ccd8ca827b0526cd57a71c123'::text)                            ->  Bitmap Index Scan on idx_t_regexp_gin  (cost=0.00..68.00 rows=1 width=0)                                  Index Cond: (t_regexp.info ~ '6ccd8ca827b0526cd57a71c123'::text)

正则匹配查询性能

有结果性能(例如0和8,B,6和b混淆)

digoal=# select ctid,* from t_regexp where info ~ 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]efb' order by info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]efb' limit 10;  LOG:  duration: 3181.592 ms  plan:  Query Text: select ctid,* from t_regexp where info ~ 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]efb' order by info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]efb' limit 10;  Limit  (cost=72.03..72.03 rows=1 width=39) (actual time=3181.568..3181.569 rows=2 loops=1)    Output: ctid, info, ((info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]efb'::text))    ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=72.03..72.03 rows=1 width=39) (actual time=3181.566..3181.566 rows=2 loops=1)          Output: ctid, info, (info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]efb'::text)       ctid     |               info                 --------------+----------------------------------   (260416,110) | b44c9616bfa86a722daa9596f86ebefb   (504007,4)   | b44c9616bfa86a722daa9596f86ebefb  (2 rows)  Time: 3189.666 ms

又如再加难度,中间忘记了几个字符,只知道是数字,并且可能是2到5个数字

digoal=# select ctid,* from t_regexp where info ~ 'b44c9616bfa[8|0|B]6a722daa[\d]{2,5}6f86e[b|6]efb' order by info <-> 'b44c9616bfa[8|0|B]6a722daa[0-9]{2,5}6f86e[b|6]efb' limit 10;  LOG:  duration: 3249.156 ms  plan:  Query Text: select ctid,* from t_regexp where info ~ 'b44c9616bfa[8|0|B]6a722daa[\d]{2,5}6f86e[b|6]efb' order by info <-> 'b44c9616bfa[8|0|B]6a722daa[0-9]{2,5}6f86e[b|6]efb' limit 10;  Limit  (cost=72.03..72.03 rows=1 width=39) (actual time=3249.136..3249.137 rows=2 loops=1)    Output: ctid, info, ((info <-> 'b44c9616bfa[8|0|B]6a722daa[0-9]{2,5}6f86e[b|6]efb'::text))    ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=72.03..72.03 rows=1 width=39) (actual time=3249.134..3249.134 rows=2 loops=1)          Output: ctid, info, (info <-> 'b44c9616bfa[8|0|B]6a722daa[0-9]{2,5}6f86e[b|6]efb'::text)       ctid     |               info                 --------------+----------------------------------   (260416,110) | b44c9616bfa86a722daa9596f86ebefb   (504007,4)   | b44c9616bfa86a722daa9596f86ebefb  (2 rows)  Time: 3257.435 ms

无结果性能

digoal=# select ctid,* from t_regexp where info ~ 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]e12' order by info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]e12' limit 10;  LOG:  duration: 3086.572 ms  plan:  Query Text: select ctid,* from t_regexp where info ~ 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]e12' order by info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]e12' limit 10;  Limit  (cost=72.03..72.03 rows=1 width=39) (actual time=3086.567..3086.567 rows=0 loops=1)    Output: ctid, info, ((info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]e12'::text))    ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=72.03..72.03 rows=1 width=39) (actual time=3086.565..3086.565 rows=0 loops=1)          Output: ctid, info, (info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]e12'::text)   ctid | info   ------+------  (0 rows)  Time: 3094.683 ms

多机 1000亿级别的性能测试,下周发出。

转载地址:http://gowzo.baihongyu.com/

你可能感兴趣的文章
全新 DOCKER PALS 计划上线,带给您不一样的参会体验!
查看>>
如何去设计前端框架能力?星巴克消息开放项目从0到1,从点到面的思考
查看>>
HBase+Spark技术双周刊 第六期
查看>>
一个很无语的bug——for语句的Unexpected token
查看>>
用户端智能在蚂蚁财富的应用实践
查看>>
Python的定义编码以及注释等
查看>>
年报解读 | 中国农业银行开启零售转型,2018年信用卡发卡量突破一亿张
查看>>
大数据最核心的关键技术——32个算法,必看!!
查看>>
巨拿科技获得联创东林千万级投资,打造白领福利新场景
查看>>
ES6关于Promise的用法
查看>>
SpringBoot - 日志配置
查看>>
KVM虚拟机测试CEPH健康报 OSD near full
查看>>
[EMC++] Item 9. Prefer alias declarations to typedefs
查看>>
复制数据库表数据到另外一张表
查看>>
spring cloud互联网分布式微服务云平台规划分析--spring cloud SSO单点登录系统
查看>>
ListView自动滚到最后一条
查看>>
无法使用SQL login去登陆SQL Server - 'Password did not match'
查看>>
12月12日云栖精选夜读 | Python 10大谬论,你可能对Python存在的一些误解!
查看>>
MySQL 异常--1045
查看>>
【对讲机的那点事】史上最强通信线路施工维护秘籍
查看>>